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Machine Learning Systems are Ubiquitous

Google

Big Data in Government, Defense and Homeland Security 2015 - 2020

CER & BB one) [

vewvorc uay 12205 e FIOW BiG Data Could Replace
Your Credit Score

April 3,2013, Vol 309, No. 13 >

< Previous Article  Next Article >

Viewpoint | April 3,2013

The Inevitable Application of Big Data to Health

Care Credit scores are useful in determining who gets loans, but they're far from
Travis B. Murdoch, MD, MSc; Allan S. Detsky, MD, PhD perfect. AvantCredit determines loan-worthiness based on all sorts of factors,
[+] Author Afiliations including your use of social media and prepaid cell phones.

Big Data in Education

Learn how and when to use key methods for
educational data mining and learning analytics on
large-scale educational data.

°
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Machine Learning Systems are Opaque

User data Credit Decisions

Classifier

Why was Joe denied credit by the tree ensemble model?




Machine Learning Systems are Opaque

17>

DR Classifier Diabetic
retinopathy

Stage 5

Why this diagnosis from the GoogleNet neural network?




Vision: Explanations <4mmp Machine Learning Model Quality

Explanations to enhance transparency, assess &

improve model quality

® What are requirements for “good” explanations?
® How can explanations enable model quality assessment & improvement?

o  Privacy, Fairness, Accuracy...

Applications: Finance, healthcare, ...



Vision 1 : Explanations & Machine Learning Model Quality

Model quality today: Accuracy
focused on model
accuracy metrics

Emerging research: A
lot more to model
quality than accuracy



Vision 2: Explanations Enhances Trust and Transparency

Yy

t 16, 2019, 03:35pm ED’ 4,17 ie:

Explainable AI In Health Care:
Gaining Context Behind A

Diagnosis Explainability: The Next Frontier for
ot Artificial Intelligence in Insurance and
Chest X-Ray Image Artificial intelligence / Machine learning Banklng
e Nvidia Lets You Peer ®
Sn::gg:,a e Inside the Black Box of Its

Self-Driving Al

In a step toward making Al more accountable, Nvidia has developed
a neural network for autonomous driving that highlights what it’s
focusing on.

[Andrew Y. Ng et. al. 2017]
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Explanations are Necessary

& Credit Application

® it
p—
Income Length of Credit
= Cs)
5= X

Total Accounts  Missed Payments

@ %

Inquiries Debt to Income

Credit
Classifier




Requirements for “Good” Explanations

e Answer rich set of queries
e Capture causal influence
e Reflect “power” of a feature

® Beaccurate

11



Input Feature Importance

Annual Income Term Duration Installment Grade Loan Amount DTI Home Ownership
2 1.74

144

-3 -2.74



Methods for Computing Input Feature Importance

Quantitative Input Shapley Additive Influence.-Directed
Influence (QII) Explanations (SHAP) | Explanations
Datta, Sen, Zick Lundberg & Lee Leino, Sen, Datta,

Fredrikson, Li

2001 2017
Permutation Local Interpretable Integrated Gradients
Importance (PI) Model-Agnostic Sundararajan, Taly, Yan
Breiman Explanations (LIME)

Ribeiro et al.



Similarities Across Methods

QUERY  have a score of 665 for Jane
DEFINITION Why does the model: « have disparate impact
e deny Jane
670 551

OUTPUT 665 620 & 723 & 621
COMPARISON & > & &

Causal Testing

SUMMARIZATION Of 665, 133 is accounted for by DTI, -45 by income, etc.
(Aumann) Shapley Values




Power of a State (Feature)

Which states contribute
the most electoral votes?



Power of a State (Feature)

Which states decide the
winner?

Causal Influence of Pennsylvania is high



Power Depends on Marginal Influence

What is the effect of PA after results
from IN, GA, MD are in?

Win Presidency

67% Clinton

FORECAST

OBAN



Shapley Value Averages Marginal Influence

5 ISIt@-]S]-1)
4NV = 2 | n(S)

SCN\{i}
Symmetry Dummy Monotonicity
Equal marginal contribution * Zero marginal contribution * Consistently higher marginal
implies equal influence implies zero influence contribution yields higher
Example: cloned features * Example: features never influence
touched by ML model * Necessary to compare
feature influence scores of
individuals

Reflect “power” of a feature



Efficient Shapley Value Estimation
e Exact computation is exponential in the number of features

e Efficient estimation
o Sampling

o Leveraging structure of tree models

e PAC-style bounds on accuracy of estimation

e High empirical accuracy



— Takeaways

e Shapley Value based methods can be the basis for meaningful reason codes
o  Captures “power” of a feature while accounting for feature interactions

e Reason codes vary significantly based on which comparison group is chosen
o  Approved applicants vs All applicants

e Explanationsvary based on model output type
o  Log-odds vs probabilities vs classification outcomes

e Explanation accuracy is critical

o  Methods like TreeSHAP are accurate for risk scores but can be very inaccurate for classification outcomes
o  Qll method is accurate for risk scores, probabilities, classification outcomes



Explaining Deep Neural Networks

Image 1. Input Feature Importance

2. Internal Explanations




Integrated Gradient

ShapleyValue ) Aumann-Shapley mmmmmmmm)  Integrated Gradient

continuous neural network [Sundararajan et al,
features ICML 2017]
aF(y(a v%)
1G (x; xb,F)—(x—xb) o

where y(a; x, xp) = x + a(x — xp)

Aggregating the gradient of all pointson a .
linear path from a user-selected baseline to ¢
the target input Xb



Integrated Gradient

ShapleyValue ) Aumann Shapley mmmmmmmm)  Integrated Gradient

continues differentiable [Sundararajan et al.
features output ICML 2017]
Original image Top label and score Integrated gradients Gradients at image
Integrated Gradient is the only path method v .
that satisfies - e
*  Symmetry
e  Dummy ,
» Efficiency(Completeness) Toplabel: frabost

Score: 0.999961

* Additivity :‘ﬁ




Now It’s Time to Dive Deeper...

Input Attributions ‘ Internal Attributions

Why we are interested in internal
representations?

Deep Neural Network mmm=)  “Sports Car”




Now It’s Time to Dive Deeper...

Input Attributions ‘ Internal Attributions

Why we are interested in internal
representations?

What does each
neuron learn?

)  “Sports Car”




Deeper

Now It’s Time to Dive

Internal Attributions

What concept does
each neuron lear

Input Attributions

“Sports Car”

QO Q»QWQ O
N

>
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X
N
X N,

PN
OO
29
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W o7 ‘

related to the label over a

What is the key concept
distribution of input?




What Makes Orlando Bloom Orlando Bloom?

Internal explanation for a deep network

Influence-Directed

Explanations
Leino, Sen, Fredrikson, Datta, Li, ITC ‘18



Detecting Diabetic Retinopathy Stage 5

Optical Disk

an nE

Influence-Directed

Explanations
Leino, Sen, Fredrikson, Datta, Li 2018




Requirements for “Good” Explanations

®
X | h ¢z g y
®
Faithfulness
|dentify features that are A “few” features explain Model is fed “familiar”
causing model predictions model predictions inputs

Influence-Directed

Explanations
Leino, Sen, Fredrikson, Datta, Li, ITC ‘18



Distributional Influence

Influence = average gradient over distribution of interest

xh;Z/gy

y =F(x) =g(2),z=h(x)

0
I5(F, P) := L ~ gij) P(x)dx

Slice with
neuron z;

Gradient of
Quantity of
Interest g(.)

For input x
[note z=h(x)]

Weighted by probability
of input x from Distribution of
Interest P

Influence-Directed

Explanations
Leino, Sen, Fredrikson, Datta, Li, ITC ‘18



Axiomatic Foundation for Distributional Influence

0
IS(F, P) := L N ‘gs) P(x)dx

When s is the input slice(h(x) = x), Distributional Influence satisfies:

Axiom (1), Linear Agreement: If /' behaves linearly over the distribution of interest,
then 17 (F, P) returns the weight of the j-th feature .

Axiom (2), Distributional Marginality: If the partial derivatives w.r.t. an input feature are
identical for I, F, over the distribution of interest, then I/ (F;, P) = I7(F,, P)

We are

interested in We are not

interested in

Influence-Directed
Explanations

B H R ¢
Images Source: Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness [Liu et al. 2020] Lel no, Sen, Fred : kSOﬂ, Datta’ Ll H—C 18



Distributional Influence Generalizes Existing Methods

IS(F, P) := j 29%) b )iz

XEX aZj

When s is the input slice(h(x) = x)
* and X is aset of points (uniformly) distributed
on a linear path from a baseline input to the
targetinput multiplying I7 (7, P)

with (x — x;)
* and X is aset of points in the Gaussian

o : ) Smooth Gradient
Distribution centered with the target input [Smilkov et al. 2017]

Integrated Gradient
[Sundararajan et al. 2017]




Internal Explanations via Influence Paths

LSTM

QOO0 Q0

P(are) — P(is)

QOO0 OQOO
O0O0O 0] 1@

Savs A Sava A Sava JO)
QOO0 O0O0O0O QOO®
OO00O0O OO00OO CO®O0O
behind the

Influence paths provide insights into misclassifications
Model can be compressed down the influential paths without changing

the utility of the model

Influence Paths
Lu, Mardziel, Leino, Fedrikson,

Datta, ACL 20



Model Compression with Influence Paths

e Primary path from the subject alone
provides strong signal for SVA; removing it
breaks the model

e Removing primary path from the
intervening noun

o Decreases performance ifitis a helpful noun

o Increases performance ifitis an attractor

Compression Scheme
Task C Cu o1 ¢ | c
nounPP SS .66 1) .77 | .95
nounPP SP .64 754 40 ﬁ
nounPP PS 34 691 .18 | .80
nounPP PP | .39 68] .58
nounPP | mean | .51 70 48 | .87

Ci: Only keep primary from intervening noun
Cs: Only keep primary path from subject

Csi: combination of Ci and Cs

C: The original model
C: complements



Influence Graphs for BERT

—— pos, attn

[CLS] g o o o © = = pos, skip

; thel:] S e — — neg, skip

== —— neg, attn
pilots[ ] - -o= = 0= = -Cmr - (%)

B I(x;,7)

B E R I . e[Sl SSepeear == W I(x;,n)
V.S. LSTM the[:]\xco;

architect[ |~ C

(o)
likes[] - -o - o)
e Scaling up method to identify IMASK][ ] o
influential paths o shoft[7] » == <gn == gfe =
3= -/: o
e Prevalence of “copy” and “transfer” [SEPI[J- 6 o o
operations to carry context o1

Influence Graphs for BERT
Lu, Wang, Mardziel, Datta, 2020



Axiomatic Foundations of Explanations

. Dummy Symmetry ‘ Linearity

Weight Faithfulness Robustness
eceoe ° 6
ConceptSHAP SHAP Saliency Map
4—
TreeSHAP
b Sha.p.ley Value Un/form Gradient
evceec o0 oo o
Qll Smooth Gradient
[ J
LIME LRP
[ X )
DeepLIFT
TSP

If an axiom is not noted on a method, it is either not validated yet or violated

Proportionality

. Distributional Faithfulness

@ cefficiency (..))

Distributional——— Pathway Influence

Influence

Integrated
Gradient

o o
Occlusion-N

Guided BP

____—» Conductance

’.
|

I' CAM

) Information
! Grad-CAM Bottleneck
I_ Feature

\ Vlsuallzat/on

]



Related Work

Explanation Framework Properties

Quantity Distribution

Influence-Directed Explanation
[Leino et al. ITC ‘18]

Conductance
[Dhamdhere et al. ICLR ‘19]

Integrated Gradient
[Sundararajan et al. ICML “17]

Smooth Gradient
[Smilkov et al. 2017]

Simple Taylor
[Bach et al. 2015 PLOS ONE]

Deconvolution
[Zeiler et al. ECCV ‘14]

Guided Backpropagation
[Springenberg et al. 2015 ICLR Workshop]

Layer-wise Relevance Propagation
[Bach et al. 2015 PLOS ONE]

v Supports v/~ Limited flexibility

v

v

v Supports under some
parameterizations

Influence Properties
Internal Marginality = Sensitivity
v v v
v v v
v v
v v
v
/T
\/T
vl v* v*

\/T Internal influence as an intermediate step



Takeaways

“Good” explanations

Answer rich set of queries
Capture causal influence

Reflect “power” of a feature
(axiomatic foundations)

Are accurate

Applies consistently to

e Traditional statistical ML and
neural networks

e Structured, image, text data

38



Demo TrulLens

Library containing attribution and interpretation methods for deep nets. pip install trulens

Explain and visualize models built with

.f 1' O PyTorch

Tensor\

github.com/truera/trulens



Recap | Distributional Influence

Influence = average gradient over distribution of interest

:/ Slice with
X h 7 g % neuron z;
o

Gradient of
Quantity of

y=F(x) =g(z),z = h(x) Interest g(.)

For input x
[note z=h(x)]

Weighted by probability

0g9(z) . vty
S . of input x from Distribution of
Ij (F,P) := j 0z P(x)dx Interest P

xeX ]

Influence-Directed

Explanations
Leino, Sen, Fredrikson, Datta, Li, ITC ‘18




Demo TrulLens

Library containing attribution and interpretation methods for deep nets. pip install trulens

Explain and visualize models built with

.f 1' O PyTorch

Tensor\

github.com/truera/trulens



Q&A



B re a k I [We will be back at 1:20 pm PT]
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4 Privacy

Explanations

Part One



Model Quality & Privacy

Machine learning models can potentially violate societal privacy norms
e Misuse protected information when making predictions
e Automate, enhance surveillance activities

e Leak confidential information about subjects or training data

These outcomes are usually unintentional, symptomatic of model quality issues!



Inference Attacks on ML Models

y=ax+h e . y= ax + b e _7
~ o« ¥ y=ax+bh o 3
uoo o o /
Sensitive Data °

I Model parameter\ Queries

Inference




Leaky Language Models

User Secret Type Exposure Extracted?

A CCN 52 v
Carlini et al., "The Secret Sharer: Evaluating and B SSN 13
Testing Unintended Memorization in Neural SSN 16
Networks". USENIX Security '19 C SSN 10
SSN 22

"users may find that the input 'my social-security SSN 32 v
numberis ..." gets auto-completed to an obvious F SSN 13
; CCN 36
secret . N 3

CCN 48 v

Table 2: Summary of results on the Enron email dataset. Three
secrets are extractable in < 1 hour; all are heavily memorized.



Reconstructing Training mages

Model Inversion [Fredrikson et al., CCS’15]

* Looked at facial recognition models

* Turkers matched reconstructed images to training data
overwhelmingly often

* Limitation: models were simple




Howto: Reconstruct Training Images

Algorithm 1 Inversion attack for facial recognition models.  » Basic idea: gradient descent on model input,

1: function MI-FACE(label, o, 3,7, \) towards targeted class
2 e(%) =1 = fuaper(x) + AUXTERM(x) * Processing, regularization for image quality
3 Xo < 0 + Often vanilla GD works just as well
4 fori<1...ado ] -
5: X; < PROCESS(x;—1 — A - Ve(x;-1)) » Attackis "whitebox*
6: if c(x;) 2 max(c(xi-1),. .., c(xi-p)) then » Blackbox variant thwarted by quantizing output
7 break

8: if ¢(x;) < then

9: break

10: return [arg min, (c(x;)), minx, (c(x:))]

Key quantity is the gradient wrt the input

This is given by many explanation methods!




Reconstruction and Explanations

Robust models are also more prone to model inversion!

Recent observation: robust models are more explainable
(see Part 3 of this tutorial)

Resnet

Saliency Mapon  Saliency Map on
Regular Model Robust Model

ResNet50 ResNet50

[Meija et al. NeurlPS PriML’19]



Membership Inference [Shokri et al. Oakland’17, Yeom et al. CSF’18]

Attacker’s goal: determine whether given point was in training data

1.

oW

Sample dataset S from population distribution D, train model Fon S
Choose uniform-random b from {0,1}

Draw z=(x, y) from Sif b=0, otherwise draw z from D

Give attacker A following information: F, z, D

Attacker “wins” if A(F, z, D) = b

Why is this a privacy risk?

® Think: medical data, political surveys, ...
® Sometimes viewed as a general indicator of training data leakage

52



Why is this even possible?

Seems to contradict the purpose of ML: learn general trends from many examples
Key idea: overfitting (poor generalization in loss) is sufficient for membership vulnerability

Theorem. There exists a membership adversary whose advantage is proportional to
the model’s generalization error [Yeom et al., CSF’18].

Surprise: overfitting is not necessary for membership vulnerability

Theorem. Given an €(n)-ARO-stable learning rule L, there exists a related L’ that is €°(n)-
ARO-stable, where |g(n)-€’(n)|is negligible in n, and L’ admits a membership adversary that
achieves advantage near 1 with high probability. [Yeom et al., CSF’18].

53



Membership inference from feature use jusenix security’20]

Hypothesis: feature use provides evidence of membership influence of “sunglasses” feature

/ indicates membership
POODDDD® \

training set
celebrity A has sunglasses in

Celebrity A 50% of training instances
training set
. celebrity B has sunglasses T .
Celebrity B in 25% of training instances sunglasses are predictive in training
set

54



Typical explanations on test instances of Tony Blair

Attribution map on training instance of
Tony Blair with distinctive pink
background, which is influential on the
model’s correct prediction.

95



Leveraging Explanations to Fix Representations

Internal influence gives us the information we need

Step 1: estimate “normal” distribution of feature importance
Influence

* Freeze network up to a given layer

* Train “proxy” models above that layer

. . [

* Measure feature importance on proxies |
. . . |

Step 2: estimate of how useful a feature is as evidence of :
membership I
\

Step 3: build “attack model” to predict membership

56



Differential Privacy: A Rigorous Defense

World 1 World 2

Local Random Coins Local Random Coins

} }
(X1,...,Xn) —>—>Model (%’1,...,Xn) —»—»Model

Differential privacy says:

Forall x1, x1', s. Pr[K(x1,...,xn) =s] <exp(g) x Pr[K(x1',...,xn) = s]

Bounds the relative advantage of any breach!



Close Match for Membership Inference

Membership inference is closely tied to differential privacy

Theorem [Yeom et al., CSF’18]. If Fis e-differentially private, then any
membership adversary Awill have advantage bounded by & - L

The "proven" €is a (probably loose) upper-bound on the property satisfied by a model

0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55
0.5

| Il 1 No Defense [] (1 Dropout I M 0.25-DP | 0 1-DP l B 4-DP [1 0 16-DP | -

curacy

ac

MR

MNIST LFW CIFARI10 CIFAR100




accuracy

The Downside: Accuracy Tradeoff

0.80

0.75

0.70

0.65 H

0.60 |-

0.55

0.50

.. training accuracy | A

u O N O O

delta

— testing accuracy 14
/ 13
12
1
L . 0
0 10 20 30 40 50 60
epoch
(1) e=2

Source: Abadi et al., Deep Learning with Differential Privacy. CCS’16

accuracy

0.80

0.75

0.70

0.65 H

0.60 |

0.55

0.50
0

le—6
. trainlnéaccuracy 1
— testing accuracy |
20 40 60 80 100 120 14
epoch
(2)e=4

CIFAR10, pre-trained convolutional filters, with tensorflow-privacy

9
8
7
6
58
48
3
2
1
8

accuracy

1.0

0.8

0.6

0.4

0.80 — —te=s
0.75}
0.70} .
065— . trainlngaccuracy
— testing accuracy

0.60
0.55
0.50 ‘ ; 8.0

0 100 200 300 400 500 600 70

epoch
(3)e=28

delta



Summary

Model quality issues can lead to
unintentional privacy issues

In some cases, these can be

identified using explanation
techniques

There are many open questions
around balancing privacy, utility,
and explainability




Explanations \

Fairness

Part Two



Bias in ML Applications

Machine Bias >

COOKING

. AGENT ' WOMAN

ROLE | VALUE

FOOD @
HEAT | STOVE
TOOL | SPATULA

PLACE KITCHEN

Tukish~

O bir doktor.

O bir hemgire.

He is a doctor.

She is a nurse.

<)



Proxy Use & Fairness

Protected information type: Race

Age
Income
Zip-code

Proxy use

« Interpretation
(Strong predictor;
Credit offer? associated)

« Influence (high Qll)

Proxy Use
Datta, Fredrikson, Ko, Mardziel, Sen CCS 2017
Yeom, Datta, Fredrikson NIPS 2018



Proxy Use in Tree Models

Decomposition is:
* p;: subtree of model’s AST

* p,: enclosing context

Finding of proxy use includes a witness: a
subtree that causes the use

Can function as an explanation for some
discriminatory behaviors in the model!

interested?

offer

no
offer

women’s

college

interested?

no
offer

offer

64



Proxies in Linear Models

Y(X) = a1X1 + 32X2 + ...+ aan

What are the decompositions?
e Individual terms a,X,? Or groups like a;X; + a,X,?
e What about 0.5%a.X; +a,X,?

Component P(X) = fia.X; + £,a,X;+ ... + £.0.X,
for By, ..., fn €10, 1]

65



Proxies in Linear Models
Y(X) = a1X1 + 32X2 + ...+ aan

View random variables as vectors in inner product space
e Covariance s aninner product

e |Influenceis proportional to magnitude (i.e. variance)

e Association measured by the angle between variables
This gives us:

(X, X)) = Exxl (Y(X) - Y(X, P(X))))? ] « Var( P(X))
Asc(Y, Z) « Cov(Y, 2)

66



Finding Linear Proxies

Linear Solution iff
Relaxation proxy exists

Encode as
Quadratic

Program « Lower-bound « QP tractable in some
influence cases
« Solutions over- + LP relaxation gives

approximate good results in
practice

« Maximize influence
+ Subject to
association threshold

67



Bias Amplification [Zhao et al., EMNLP17]

Image source: “Men also like shopping”, Zhao et al.

COOKING COOKING COOKING COOKING COOKING
ROLE | VALUE ROLE | VALUE ROLE | VALUE ROLE | VALUE ROLE | VALUE
AGENT | WOMAN AGENT WOMAN AGENT  WOMAN AGENT = MAN
FOOD PASTA FOOD FRUIT FOOD MEAT FOOD @ FOOD 1
HEAT STOVE HEAT 2 HEAT STOVE HEAT STOVE HEAT STOVE
TOOL | SPATULA TOOL KNIFE TOOL | SPATULA TOOL | SPATULA TOOL | SPATULA
PLACE KITCHEN PLACE KITCHEN PLACE 'OUTSIDE PLACE KITCHEN PLACE KITCHEN

In training data, 66% of “cooking” images have women in them

In predictions, 84% of “agent” roles in cooking images are labeled “woman”

68



Feature-wise Bias Amplification jiICLR’19]

Intuition: “kitchen features” are weak proxies for gender in dataset
« Weak features have too much influence in predictions
* Prevalent weak features for class - biased predictions
« Consistent outcome with gradient descent

Bias Amplification vs. # Weak Bias Amplification vs. # Weak
Features Features
0.3 07

02 065
0 06
055

0

05
0 50 100 150 200 250 300 350 400 450
ame N=— 100 e N=500

10 60 110160210260310360410460510

emmms| R (LBFGS) esmme| R (SGD)
ams N= 1,000 S\ M (SMO) emmmsSVM (SGD)
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Quick Fix: Feature Pruning

Intuition: balance weak features across classes
* Measure internal influence to identify weak features
* Optimize “cut set” to mitigate bias while preserving accuracy
* Remove selected features from model

0.1

Bias Amplification Before and After Accuracy Increase After Removal
0.5 0.4
0.4 0.3
03 0.2
0.2
0.1
I 0 _ I [ |

prostate el

0 m_ I m_ | II - mm I
O o © = © o »n o N RS QS RO s
T 28 5 & £ e T ® NN &Q’«\ & \\Q® NG N P W®
< o 2 8 =2 S CRE= & E e S ¢ S
:_n_) 8 & > =3 = E N
[72]

micromass

M bias amp. pre M bias amp. post
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Fairness in learning is a complex
issue, with no one-size-fits-all
solution or technique

Explaining a model’s use of

Su Mima ry protected information, and its

features, can shed light on
discriminatory outcomes




Q & A [2:00pm - 2:20pm Pacific Time]



Break I

Section IV will start on 2:30 pm, Pacific Time



Section Il
From Model Quality to Explainability

AAAI-21




Fooling a DNN is easy

Adversarial Examples
Szegedy et al. 2014

Goodfellow et al. 2015*
Papernotetal. 2016



Explanations can also be manipulated adversarially

&

On clean input | On adversarial input
Prediction .
Attack Model A Llama (correct) i Cat (wrong)
____________________ :__ﬁ;________________________________________________________________f___________________________
predict E predict
Llama (correct) . Llama (correct)

Explanation a
Attack ¥ B Model A

explain explain

Explanation Attacks
Ghorbani et al. AAAI 20197
Dombrowski et al. NIPS 2019
Wang et al. NIPS 2020

attribution map changes
significantly




Can we trust explanations?

e If explanations can be manipulated, can we trust them?
e |sthere something wrong with the explanation method that produces these
anomalies?



Can we trust explanations?

suppose that
changing just one
pixel in this region
prevents the model
from predicting
“panda”

“panda” not “panda” possible explanation

s it really wrong to assign influence to the pixel that can be
modified to change the model’s prediction?

If it weren’t for this pixel, this point would not be classified as “panda”




Proposition

Key Idea
“bugs” in faithful explanations are evidence of model quality issues




Model-based attacks on explanations

predict
2
Training Loss Model A
Model A Predictions ; -
F
explain il
@ predict
2

+adversarial loss

Same Output
Behavior

explain ﬁz

Model-based Explanation Attacks
Anders etal. 2020

Model B

Different
Explanations




Now what?

e Key ldea: “bugs” in faithful explanations are evidence of model quality issues
e On well-behaved models, we shouldn’t see these anomalies
e How do we improve model quality?



Local robustness

i.e., the model makes the same

- ] prediction on all points in the

. e e-ball centered at x
Definition

A model, F, is e-locally-robust at x if Vx',

decision boundary

||x—x’|| <e = F(x)=F(")

Class A Class B



Adversarial examples are a violation of local robustness

decision boundary

benign input adversarial example

Class “panda” Class “gibbon”

“panda” “gibbon”



Obtaining robust models

minimize loss on

Standard natural input
Training

minimize loss on
Adversarial adversarial input
Training

! Adversarial Training

Madry etal. 2017



Robust models are more explainable

e Input gradients on robust models better align with the salient objects

bird airplane frog insect dog primate

Original
Original
Sample

Standard
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Explanations on Robust Models
Tsipras etal. ICLR 2019*
Etmannetal. ICML 2019



Robust models are more explainable

e Feature visualization on robust models yields more recognizable results

Standard

Feature Visualization Visualizations on Robust Models
For classifier, f, and class, c, find § that maximizes f,(x, + 6) Tsipras etal. ICLR 2019




Why are robust models more explainable?

Hypothesis (llyas et al. ICLR 2019)
standard-trained models use non-robust features that are nonetheless
predictive on the data distribution

example of non-robust
features contained in an
instance labeled “frog”

frog Non-robust Features
Ilyas etal. ICLR 2019

non-robust features only



Non-robust features

Definition
A feature is a neuron in a neural network,
whichis a function, f: R" - R

Definition
A feature is non-robust on data points, (X,Y), if f(X) correlates with Y,
but (X 4+ 6) does not correlate with Y for ||5|| <e€

Non-robust Features
Ilyas etal. ICLR 2019



Isolating robust features

e Non-robust features are not useful for a robust objective, thus we do not expect
robust models to learn them (i.e., robust models should only learn robust features)

feature extractor

randomly initialize x’
y of robust model

Non-robust Features
Ilyas etal. ICLR 2019



Why are robust models more explainable?

Standard-trained models use non-robust features that are nonetheless predictive
Non-robust features are not useful for a robust objective, thus we do not expect
robust models to learn them

e Non-robust features are inherently less interpretable

not interpretable more interpretable

frog

non-robust features only robust features only

Non-robust Features
Ilyas etal. ICLR 2019



Summary

“Bugs” in faithful explanations are
evidence of model quality issues

Quality explanations require

quality models

Robustness may be one way to
achieve better model quality




Q&A



Thirty-Fifth AAAI Conference on Artificial Intelligence

From Explainability to
Model Quality and Back
Again

Anupam Datta, Matt Fredrikson, Klas Leino, Kaiji Lu,
Shayak Sen and Zifan Wang

We appreciate your participance in this tutorial.
For More Resources:

o Tutorial Website

e Accountable Systems Lab

e TruLens and Demos

 Truera’s Blog Posts on Explanability

Contact Us: shayak@truera.com, zifan@cmu.edu -


https://fairlyaccountable.org/
https://github.com/truera/trulens
https://fairlyaccountable.org/aaai-2021-tutorial/
https://truera.com/blog/

