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From Explainability to Model Quality and Back Again

From Model Quality Back to 
Explainability

From Explainability to 
Model Quality

Axiomatic Foundations 
of Explainability



Machine Learning Systems are Ubiquitous



Machine Learning Systems are Opaque

Credit
Classifier

User data Decisions

? ? ?

Why was Joe denied credit by the tree ensemble model?



Machine Learning Systems are Opaque

DR Classifier Diabetic 
retinopathy 
Stage 5

? ? ?

Why this diagnosis from the GoogleNet neural network?



Vision: Explanations               Machine Learning Model Quality 

● What are requirements for “good” explanations?
● How can explanations enable model quality assessment & improvement?

○ Privacy, Fairness, Accuracy… 

Applications: Finance, healthcare, …

Explanations to enhance transparency, assess & 
improve model quality 



Vision 1 : Explanations &  Machine Learning Model Quality

Accuracy

Unfair Bias
Privacy

Conceptual Soundness

Reliability
Data bias

Explanations

Robustness

Model quality today: 
focused on model 
accuracy metrics

Emerging research: A 
lot more to model 
quality than accuracy

Calibration



Vision 2: Explanations Enhances Trust and Transparency

[Andrew Y. Ng et. al. 2017]



Section I
Foundations of XAI

AAAI-21



Debt to Income

%

Total Accounts

Inquiries

Income

Missed Payments

Length of Credit

Credit Application

Explanations are Necessary

Credit 
Classifier



Requirements for “Good” Explanations

● Answer rich set of queries

● Capture causal influence

● Reflect “power” of a feature

● Be accurate

11



Input Feature Importance



Quantitative Input 
Influence  (QII)
Datta, Sen, Zick

Local Interpretable
Model-Agnostic
Explanations (LIME)
Ribeiro et al. 

Permutation 
Importance (PI) 
Breiman

Shapley Additive 
Explanations (SHAP)
Lundberg & Lee  

2001 2016 2017

Methods for Computing Input Feature Importance

2018

Integrated Gradients
Sundararajan, Taly, Yan

Influence-Directed 
Explanations
Leino, Sen, Datta, 
Fredrikson, Li



QUERY
DEFINITION1

OUTPUT
COMPARISON2

SUMMARIZATION3

665 620
670

723 621
551

Causal Testing

Of 665, 133 is accounted for by DTI, -45 by income, etc.

Similarities Across Methods

Why does the model:
• have a score of 665 for Jane
• have disparate impact
• deny Jane

(Aumann) Shapley Values 



Power of a State (Feature)

Which states contribute 
the most electoral votes?



Power of a State (Feature)

Which states decide the 
winner?

Causal Influence of Pennsylvania is high



Power Depends on Marginal Influence

What is the effect of PA after results 
from IN, GA, MD are in?



fi (N, v) = | S | ! (n - | S | - 1)!S
S⊂N\{i} n! mi(S)

Shapley Value Averages Marginal Influence

Symmetry

• Equal marginal contribution 
implies equal influence

• Example: cloned features

Dummy

• Zero marginal contribution 
implies zero influence 

• Example: features never 
touched by ML model

Monotonicity

• Consistently higher marginal 
contribution yields higher 
influence

• Necessary to compare 
feature influence scores of 
individuals

Reflect “power” of a feature



Efficient Shapley Value Estimation

● Exact computation is exponential in the number of features

● Efficient estimation

○ Sampling

○ Leveraging structure of tree models  

● PAC-style bounds on accuracy of estimation

● High empirical accuracy



|

Takeaways

● Shapley Value based methods can be the basis for meaningful reason codes
○ Captures “power” of a feature while accounting for feature interactions

● Reason codes vary significantly based on which comparison group is chosen
○ Approved applicants vs All applicants 

● Explanations vary based on model output type
○ Log-odds vs probabilities vs classification outcomes

● Explanation accuracy is critical
○ Methods like TreeSHAP are accurate for risk scores but can be very inaccurate for classification outcomes
○ QII method is accurate for risk scores, probabilities, classification outcomes



Explaining Deep Neural Networks

Image

NLP

1.  Input Feature Importance

2.  Internal Explanations



Integrated Gradient  

Shapley Value Aumann-Shapley
continuous
features

Integrated Gradient
neural network [Sundararajan et al. 

ICML 2017]

𝐼𝐺 𝑥; 𝑥! , 𝐹 = 𝑥 − 𝑥! )
"

# 𝜕𝐹(𝛾(𝛼; 𝑥, 𝑥!))
𝜕𝛾 𝑑𝛼

where 𝛾 𝛼; 𝑥, 𝑥! = 𝑥! + 𝛼(𝑥 − 𝑥!)

𝑥!

𝑥

Aggregating the gradient of all points on a 
linear path from a user-selected baseline to 
the target input



Integrated Gradient  

Shapley Value Aumann Shapley
continues 
features

Integrated Gradient
differentiable
output

[Sundararajan et al. 
ICML 2017]

Integrated Gradient is the only path method 
that satisfies 
• Symmetry
• Dummy
• Efficiency(Completeness) 
• Additivity



Now It’s Time to Dive Deeper…

Input Attributions Internal Attributions

Why we are interested in internal 
representations?

“Sports Car”Deep Neural Network



Now It’s Time to Dive Deeper…

Input Attributions Internal Attributions

Why we are interested in internal 
representations?

“Sports Car”

What does each 
neuron learn?



Now It’s Time to Dive Deeper…

Input Attributions Internal Attributions

“Sports Car”

v
What concept does 
each neuron learn?v

What is the key concept 
related to the label over a 
distribution of input? 

…



What Makes Orlando Bloom Orlando Bloom?

Internal explanation for a deep network 

Influence-Directed 
Explanations 
Leino, Sen, Fredrikson, Datta, Li, ITC ‘18



Detecting Diabetic Retinopathy Stage 5

Lesions

Optical Disk

Influence-Directed 
Explanations 
Leino, Sen, Fredrikson, Datta, Li 2018



Requirements for “Good” Explanations

Causal

Identify features that are 
causing model predictions

Succinct

A “few” features explain 
model predictions

Distributional 
Faithfulness

Model is fed “familiar” 
inputs

ℎ 𝑔𝑧𝑥 𝑦

Influence-Directed 
Explanations 
Leino, Sen, Fredrikson, Datta, Li, ITC ‘18



Influence = average gradient over distribution of interest

ℎ 𝑔𝑧𝑥 𝑦

Distributional Influence

Slice with
neuron zj

Gradient of 
Quantity of 
Interest g(.)

Weighted by probability
of input x from Distribution of 
Interest P

For input x
[note z = h(x)]

Ι"# 𝐹, 𝑃 ∶= 0
$∈𝒳

𝜕𝑔(𝑧)
𝜕𝑧"

𝑃 𝑥 𝑑𝑥

𝑦 = 𝐹 𝑥 = 𝑔 𝑧 , 𝑧 = ℎ(𝑥)

Influence-Directed 
Explanations 
Leino, Sen, Fredrikson, Datta, Li, ITC ‘18



Axiomatic Foundation for Distributional Influence

When 𝑠 is the input slice(ℎ 𝑥 = 𝑥), Distributional Influence satisfies:
• Axiom (1), Linear Agreement: If 𝐹 behaves linearly over the distribution of interest, 

then Ι"# 𝐹, 𝑃 returns the weight of the 𝑗-th feature .    
• Axiom (2), Distributional Marginality: If the partial derivatives w.r.t. an input feature are 

identical for 𝐹$, 𝐹% over the distribution of interest, then Ι"# 𝐹$, 𝑃 = Ι"# 𝐹%, 𝑃
• …

We are 
interested in We are not 

interested in

Images Source: Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness [Liu et al. 2020]

Ι"# 𝐹, 𝑃 ∶= 0
$∈𝒳

𝜕𝑔(𝑧)
𝜕𝑧"

𝑃 𝑥 𝑑𝑥

Influence-Directed 
Explanations 
Leino, Sen, Fredrikson, Datta, Li  ITC ‘18



Distributional Influence Generalizes Existing Methods

When 𝑠 is the input slice(ℎ 𝑥 = 𝑥)

Ι"# 𝐹, 𝑃 ∶= 0
$∈𝒳

𝜕𝑔(𝑧)
𝜕𝑧"

𝑃 𝑥 𝑑𝑥

• and𝒳 is a set of points (uniformly) distributed 
on a linear path from a baseline input to the 
target input 

Integrated Gradient

multiplying Ι"
# 𝐹, 𝑃

with 𝑥 − 𝑥!

• and𝒳 is a set of points in the Gaussian 
Distribution centered with the target input

Smooth Gradient

…

[Sundararajan et al. 2017]

[Smilkov et al. 2017]



Internal Explanations via Influence Paths

behindboysThe the tree

P(are) – P(is)

• Influence paths provide insights into misclassifications
• Model can be compressed down the influential paths without changing 

the utility of the model Influence Paths
Lu, Mardziel, Leino, Fedrikson, 
Datta, ACL ‘20

LSTM



Model Compression with Influence Paths

● Primary path from the subject alone 
provides strong signal for SVA; removing it 
breaks the model

● Removing primary path from the 
intervening noun

○ Decreases performance if it is a helpful noun

○ Increases performance if it is an attractor 



Influence Graphs for BERT 

BERT v.s. LSTM

● Scaling up method to identify 
influential paths

● Prevalence of “copy” and “transfer” 
operations to carry context 

Influence Graphs for BERT
Lu, Wang, Mardziel, Datta, 2020



Axiomatic Foundations of Explanations 
Dummy Symmetry Linearity Monotonicity Distributional Faithfulness

Weight Faithfulness Robustness Proportionality Efficiency (…)

LIME

TSP

CAM

Pathway Influence

Conductance

Information
Bottleneck

SHAP      

Shapley Value

Saliency Map

Integrated 
Gradient

Uniform Gradient

Smooth Gradient

LRP

DeepLIFT

Distributional 
Influence

Occlusion-N

Guided BP

Grad-CAM

Feature 
Visualization

Uncategorized methods…

If an axiom is not noted on a method, it is either not validated yet or violated 

ConceptSHAP

TreeSHAP

…
QII



Related Work 
Explanation Framework Properties

Quantity        Distribution        Internal
Influence Properties

Marginality     Sensitivity          

Influence-Directed Explanation

Integrated Gradient

Simple Taylor

[Leino et al. ITC ‘18]

[Sundararajan et al. ICML ‘17]

[Bach et al. 2015 PLOS ONE]

Deconvolution
[Zeiler et al. ECCV ‘14]

Guided Backpropagation
[Springenberg et al. 2015 ICLR Workshop]

Layer-wise Relevance Propagation
[Bach et al. 2015 PLOS ONE]

Smooth Gradient
[Smilkov et al. 2017]

Conductance
[Dhamdhere et al. ICLR ‘19]

Supports Limited flexibility Supports under some 
parameterizations

Internal influence as an intermediate step



Takeaways

“Good” explanations

● Answer rich set of queries

● Capture causal influence

● Reflect “power” of a feature 
(axiomatic foundations)

● Are accurate

Applies consistently to 

● Traditional statistical ML and 
neural networks 

● Structured, image, text data 

38



Demo  TruLens
Library containing attribution and interpretation methods for deep nets.

Explain and visualize models built with

github.com/truera/trulens



Influence = average gradient over distribution of interest

ℎ 𝑔𝑧𝑥 𝑦

Recap | Distributional Influence

Slice with
neuron zj

Gradient of 
Quantity of 
Interest g(.)

Weighted by probability
of input x from Distribution of 
Interest P

For input x
[note z = h(x)]

Ι!" 𝐹, 𝑃 ∶= 0
#∈𝒳

𝜕𝑔(𝑧)
𝜕𝑧!

𝑃 𝑥 𝑑𝑥

𝑦 = 𝐹 𝑥 = 𝑔 𝑧 , 𝑧 = ℎ(𝑥)

Influence-Directed 
Explanations 
Leino, Sen, Fredrikson, Datta, Li, ITC ‘18



Demo  TruLens
Library containing attribution and interpretation methods for deep nets.

Explain and visualize models built with

github.com/truera/trulens



Q & A



Break I [We will be back at 1:20 pm PT]



Section II
From Explainability to Model Quality

AAAI-21



Explanations
Privacy

Fairness
Part One



Model Quality & Privacy

Machine learning models can potentially violate societal privacy norms

● Misuse protected information when making predictions
● Automate, enhance surveillance activities
● Leak confidential information about subjects or training data

These outcomes are usually unintentional, symptomatic of model quality issues!



Sensitive Data

Inference

Model parameters Queries

Inference Attacks on ML Models



Leaky Language Models

Carlini et al., "The Secret Sharer: Evaluating and 
Testing Unintended Memorization in Neural 
Networks". USENIX Security '19

"users may find that the input 'my social-security 
number is …' gets auto-completed to an obvious 
secret"



Model Inversion [Fredrikson et al., CCS’15]
• Looked at facial recognition models
• Turkers matched reconstructed images to training data 

overwhelmingly often
• Limitation: models were simple

Reconstructing Training mages



Howto: Reconstruct Training Images

• Basic idea: gradient descent on model input, 
towards targeted class

• Processing, regularization for image quality
• Often vanilla GD works just as well

• Attack is "whitebox“
• Blackbox variant thwarted by quantizing output

Key quantity is the gradient wrt the input

This is given by many explanation methods!



Reconstruction and Explanations

Recent observation: robust models are more explainable
(see Part 3 of this tutorial)

VGG

Resnet

Robust
VGG

Robust models are also more prone to model inversion!

Saliency Map on
Regular Model

Saliency Map on
Robust Model

ResNet50 ResNet50

[Meija et al. NeurIPS PriML’19]



Membership Inference [Shokri et al. Oakland’17, Yeom et al. CSF’18]

Attacker’s goal: determine whether given point was in training data

52

1. Sample dataset S from population distribution D, train model F on S
2. Choose uniform-random b from {0,1}
3. Draw z = (x, y) from S if b = 0, otherwise draw z from D
4. Give attacker A following information: F, z, D
5. Attacker “wins” if A(F, z, D) = b 

Why is this a privacy risk?
● Think: medical data, political surveys, …
● Sometimes viewed as a general indicator of training data leakage



Why is this even possible? 

Seems to contradict the purpose of ML: learn general trends from many examples

53

Key idea: overfitting (poor generalization in loss) is sufficient for membership vulnerability

Theorem. There exists a membership adversary whose advantage is proportional to 
the model’s generalization error [Yeom et al., CSF’18].

Surprise: overfitting is not necessary for membership vulnerability

Theorem. Given an ε(n)-ARO-stable learning rule L, there exists a related L’ that is ε’(n)-
ARO-stable, where |ε(n)-ε’(n)|is negligible in n, and L’ admits a membership adversary that 
achieves advantage near 1 with high probability. [Yeom et al., CSF’18].



54

Hypothesis: feature use provides evidence of membership

Celebrity A

Celebrity B

training set

training set
celebrity B has sunglasses 
in 25% of training instances

celebrity A has sunglasses in 
50% of training instances

sunglasses are predictive in training 
set

A

influence of “sunglasses” feature 
indicates membership

Membership inference from feature use [Usenix Security’20]



55

Sample of LFW training instances

Typical explanations on test instances of Tony Blair

Attribution map on training instance of
Tony Blair with distinctive pink
background, which is influential on the
model’s correct prediction.



Leveraging Explanations to Fix Representations

56

Internal influence gives us the information we need

Step 1: estimate “normal” distribution of feature importance

• Freeze network up to a given layer

• Train “proxy” models above that layer

• Measure feature importance on proxies

Step 2: estimate of how useful a feature is as evidence of 
membership

Step 3: build “attack model” to predict membership

Influence



For all x1, x1', s . Pr[K(x1,…,xn) = s] ≤ exp(𝝴) × Pr[K(x1',…,xn) = s]

Differential privacy says:

Bounds the relative advantage of any breach!

World 1

K

Local Random Coins

(x1,…,xn) Model

World 2

K

Local Random Coins

(x’1,…,xn) Model

Differential Privacy: A Rigorous Defense



Close Match for Membership Inference

Membership inference is closely tied to differential privacy

Theorem [Yeom et al., CSF’18]. If F is ε-differentially private, then any 
membership adversary A will have advantage bounded by eε – 1.

The "proven" ε is a (probably loose) upper-bound on the property satisfied by a model



The Downside: Accuracy Tradeoff

CIFAR10, pre-trained convolutional filters, with tensorflow-privacy

Source: Abadi et al., Deep Learning with Differential Privacy. CCS’16



Summary

Model quality issues can lead to 
unintentional privacy issues

In some cases, these can be 
identified using explanation 
techniques

There are many open questions 
around balancing privacy, utility, 
and explainability



Explanations
Privacy

Fairness
Part Two



Bias in ML Applications



Proxy Use & Fairness 

Classifier

Protected information type:  Race

• Age
• Income
• Zip-code
• …

Credit offer?

Proxy use

• Interpretation 
(Strong predictor; 
associated)

• Influence (high QII)

Proxy Use
Datta, Fredrikson, Ko, Mardziel, Sen CCS 2017
Yeom, Datta, Fredrikson NIPS 2018



Proxy Use in Tree Models

64

offer

women’s 
college

true

no 
offer

false

interested? interested?

yes no

no 
offer

offer

yes no

Finding of proxy use includes a witness: a 
subtree that causes the use

Can function as an explanation for some 
discriminatory behaviors in the model!

Decomposition is:
• p1: subtree of model’s AST
• p2: enclosing context



Proxies in Linear Models

65

Y(X) = a1X1 + a2X2 + … + anXn

What are the decompositions?
● Individual terms anXn? Or groups like a1X1 + a2X2? 
● What about 0.5*a1X1 + a2X2?

Component P(X) = 𝛽1a1X1 + 𝛽2a2X2 + … + 𝛽nanXn
for 𝛽1, …, 𝛽n ∊ [0, 1]



Proxies in Linear Models

View random variables as vectors in inner product space
● Covariance is an inner product
● Influence is proportional to magnitude (i.e. variance)
● Association measured by the angle between variables
This gives us:

66

Y(X) = a1X1 + a2X2 + … + anXn

ɩ(X, X’) = EX,X’[ (Y(X) - Y(X, P(X’)))2 ] ∝ Var( P(X))
Asc(Y, Z) ∝ Cov(Y, Z)



Finding Linear Proxies

67

Encode as 
Quadratic 
Program
• Maximize influence
• Subject to 

association threshold

Linear 
Relaxation
• Lower-bound 

influence
• Solutions over-

approximate 

Solution iff
proxy exists
• QP tractable in some 

cases
• LP relaxation gives 

good results in 
practice



Bias Amplification [Zhao et al., EMNLP’17] 

68

In training data, 66% of “cooking” images have women in them

In predictions, 84% of “agent” roles in cooking images are labeled “woman”

Image source: “Men also like shopping”, Zhao et al.



Feature-wise Bias Amplification [ICLR’19]

69

♁

♂

Intuition: “kitchen features” are weak proxies for gender in dataset
• Weak features have too much influence in predictions
• Prevalent weak features for class à biased predictions
• Consistent outcome with gradient descent

0

0.1

0.2

0.3

0 50 100 150 200 250 300 350 400 450

Bias Amplification vs. # Weak 
Features

	N	=	100 	N	=	500
	N	=	1,000

0.5
0.55
0.6

0.65
0.7

10 60 110160210260310360410460510

Bias Amplification vs. # Weak 
Features 

LR (L-BFGS) LR (SGD)

SVM (SMO) SVM (SGD)



Quick Fix: Feature Pruning

70

♁

♂

Intuition: balance weak features across classes
• Measure internal influence to identify weak features
• Optimize “cut set” to mitigate bias while preserving accuracy
• Remove selected features from model
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Summary

Fairness in learning is a complex 
issue, with no one-size-fits-all 
solution or technique

Explaining a model’s use of 
protected information, and its 
features, can shed light on 
discriminatory outcomes



Q & A [2:00pm – 2:20pm Pacific Time]



Break II

Section IV will start on 2:30 pm, Pacific Time



Section III
From Model Quality to Explainability

AAAI-21



Fooling a DNN is easy

“panda” adversarial perturbation “gibbon”

Adversarial Examples
Szegedy et al. 2014
Goodfellow et al. 2015*
Papernot et al. 2016



Explanations can also be manipulated adversarially

Llama (correct)

Llama (correct)

Cat (wrong)

Llama (correct)

Prediction 
Attack

Explanation 
Attack

On clean input

Model A

On adversarial input

Explanation Attacks
Ghorbani et al. AAAI 2019*
Dombrowski et al. NIPS 2019
Wang et al. NIPS 2020

attribution map changes 
significantly

predict

explain

predict

explain

Model A



Can we trust explanations?

● If explanations can be manipulated, can we trust them?
● Is there something wrong with the explanation method that produces these 

anomalies?



Can we trust explanations?

suppose that 
changing just one 
pixel in this region 

prevents the model 
from predicting 

“panda” 

“panda” not “panda” possible explanation

Is it really wrong to assign influence to the pixel that can be 
modified to change the model’s prediction?

If it weren’t for this pixel, this point would not be classified as “panda”



Proposition

Key Idea
“bugs” in faithful explanations are evidence of model quality issues



Model B 

+adversarial loss

Model A

Model-based attacks on explanations

Model A

Model B 

predict

explain

predict

explain

2

2

Data Training Loss 
Predictions

Same Output 
Behavior

Different 
Explanations

Model-based Explanation Attacks
Anders et al. 2020



Now what?

● Key Idea: “bugs” in faithful explanations are evidence of model quality issues
● On well-behaved models, we shouldn’t see these anomalies
● How do we improve model quality?



Local robustness

Definition
A model, 𝐹, is 𝜖-locally-robust at 𝑥 if ∀𝑥′,

𝑥 − 𝑥$ ≤ 𝜖 ⟹ 𝐹 𝑥 = 𝐹(𝑥$)

i.e., the model makes the same 
prediction on all points in the 
ε-ball centered at x

Class A Class B

decision boundary

x



Adversarial examples are a violation of local robustness

Class “panda” Class “gibbon”

decision boundary

adversarial examplebenign input

“panda” “gibbon”



Obtaining robust models

minimize loss on 
natural input 

minimize loss on 
adversarial input 

Standard 
Training

Adversarial 
Training

Adversarial Training
Madry et al. 2017



Robust models are more explainable 

● Input gradients on robust models better align with the salient objects

Explanations on Robust Models
Tsipras et al. ICLR 2019*
Etmann et al. ICML 2019



Robust models are more explainable 

● Feature visualization on robust models yields more recognizable results

Visualizations on Robust Models
Tsipras et al. ICLR 2019

Feature Visualization
For classifier, 𝑓, and class , 𝑐, find 𝛿 that maximizes 𝑓!(𝑥" + 𝛿)



Why are robust models more explainable?

Hypothesis (Ilyas et al. ICLR 2019)
standard-trained models use non-robust features that are nonetheless 
predictive on the data distribution

Non-robust Features
Ilyas et al. ICLR 2019

example of non-robust 
features contained in an 
instance labeled “frog”

non-robust features only



Non-robust features

Definition
A feature is non-robust on data points, (𝑋, 𝑌), if 𝑓(𝑋) correlates with 𝑌, 
but 𝑓(𝑋 + 𝛿) does not correlate with 𝑌 for 𝛿 ≤ 𝜖

Non-robust Features
Ilyas et al. ICLR 2019

Definition
A feature is a neuron in a neural network, 
which is a function, 𝑓:ℝ% → ℝ



Isolating robust features

● Non-robust features are not useful for a robust objective, thus we do not expect 
robust models to learn them (i.e., robust models should only learn robust features)

Non-robust Features
Ilyas et al. ICLR 2019

feature extractor 
of robust model

h(x)

h(x’)

=randomly initialize x’

optimize



Why are robust models more explainable?

● Standard-trained models use non-robust features that are nonetheless predictive
● Non-robust features are not useful for a robust objective, thus we do not expect 

robust models to learn them
● Non-robust features are inherently less interpretable

Non-robust Features
Ilyas et al. ICLR 2019

non-robust features only robust features only

not interpretable more interpretable



Summary

“Bugs” in faithful explanations are 
evidence of model quality issues

Quality explanations require 
quality models

Robustness may be one way to 
achieve better model quality



Q & A



From Explainability to 
Model Quality and Back 
Again 
Anupam Datta, Matt Fredrikson, Klas Leino, Kaiji Lu, 
Shayak Sen and Zifan Wang

Thirty-Fifth AAAI Conference on Artificial Intelligence 
We appreciate your participance in this tutorial.

• Accountable Systems Lab

• TruLens and Demos

• Tutorial Website

Contact Us:  shayak@truera.com, zifan@cmu.edu

• Truera’s Blog Posts on Explanability

For More Resources:

https://fairlyaccountable.org/
https://github.com/truera/trulens
https://fairlyaccountable.org/aaai-2021-tutorial/
https://truera.com/blog/

